Strong proximinality of closed convex sets

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong proximinality of closed convex sets

We show that in a Banach space X every closed convex subset is strongly proximinal if and only if the dual norm is strongly sub differentiable and for each norm one functional f in the dual space X∗, JX(f) the set of norm one elements in X where f attains its norm is compact. As a consequence, it is observed that if the dual norm is strongly sub differentiable then every closed convex subset of...

متن کامل

On Proximinality of Convex sets in Super Spaces

In this paper, we show that a closed convex set C of a Banach space is strongly proximinal (proximinal, resp.) in every Banach space isometrically containing it if and only if C is locally (weakly, resp.) compact. As a consequence, it is proved that local compactness of C is also equivalent to that for every Banach space Y isometrically containing it, the metric projection from Y to C is nonemp...

متن کامل

Functionally closed sets and functionally convex sets in real Banach spaces

‎Let $X$ be a real normed  space, then  $C(subseteq X)$  is  functionally  convex  (briefly, $F$-convex), if  $T(C)subseteq Bbb R $ is  convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$  is  functionally   closed (briefly, $F$-closed), if  $T(K)subseteq Bbb R $ is  closed  for all bounded linear transformations $Tin B(X,R)$. We improve the    Krein-Milman theorem  ...

متن کامل

Strong Proximinality and Renormings

We characterize finite-dimensional normed linear spaces as strongly proximinal subspaces in all their superspaces. A connection between upper Hausdorff semi-continuity of metric projection and finite dimensionality of subspace is given.

متن کامل

On Convergence of Closed Convex Sets

In this paper we introduce a convergence concept for closed convex subsets of a finite dimensional normed vector space. This convergence is called C-convergence. It is defined by appropriate notions of upper and lower limits. We compare this convergence with the well-known Painlevé–Kuratowski convergence and with scalar convergence. In fact, we show that a sequence (An)n∈N C-converges to A if a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2011

ISSN: 0021-9045

DOI: 10.1016/j.jat.2011.01.001